Polarized electron and positron beams at CEPC

Zhe Duan Institute of High Energy Physics, CAS

Presented at mini-workshop on "Beam polarization in future colliders" IAS-HKUST, HK, Jan 18 , 2019

zhe.duan@ihep.ac.cn

Outline

- Motivation
- Prospect and challenges
- Equilibrium beam polarization simulations

Motivation

- Energy calibration with resonant depolarization technique was a major accomplishment at LEP
 - How much better precision can be done in CEPC?
- "Can we have polarized colliding beam experiments?" has been a must answer question in new linear/circular collider designs
 - How to implement longitudinally polarized e- (e+ ?) beam(s) for colliding experiments in CEPC?
 - Are there strong physics cases?
 - Would the design be cost effective?

Motivation

500

Chapter on polarization by Dr S. Nikitin in CEPC CDR

Appendix 8: Opportunities for Polarization in the CEPC

A8.1: Introduction

One of the future experiments at CEPC can be a precise measurement of the mass of the Z using resonant depolarization [1]. To achieve this goal one needs a method for obtaining polarized electron and positron beams. In this appendix we consider the major issues for obtaining the radiative self-polarization of particles with the current CEPC design parameters at 45 GeV and at 80 GeV.

Funding grant of MOST-2018 supports CEPC polarization studies in the coming 4 years, a more complete design of CEPC polarized beam operation at Z energy (and possibly also at W energy) is foreseen in the CEPC TDR.

Prospects and challenges

- Energy calibration with resonant depolarization
 - A detailed time diagram of operation with asymmetric wigglers
 - Complexities in energy calibration @ W
 - Estimation & simulation of the difference between the "measured energy" and the "CM energy" at IPs
- Longitudinally polarized e+/e- colliding beams
 - Polarized e+ source seems less matured at the moment
 - Maintenance of beam polarization in the booster
 - Spin rotator design
 - Spin matching
 - Equilibrium beam polarization w/ spin rotators, errors, & beam-beam

Equilibrium beam polarization simulations

The D-K formula

For Monte-Carlo simulation

$$P_{dk} = -\frac{8}{5\sqrt{3}} \frac{\alpha_{-}}{\alpha_{+}} \qquad P_{eq} \approx \Phi_{eq} \approx \Phi_{eq}$$

$P_{\text{eq}} \approx \frac{P_{\infty}}{1 + \lambda_d / \lambda_p}$ $P_{\infty} \approx -\frac{8}{5\sqrt{3}} \frac{\oint d\theta \frac{1}{|\rho|^3} \hat{b} \cdot \hat{n}_0}{\oint d\theta \frac{1}{|\rho|^3} [1 - \frac{2}{9} (\hat{n}_0 \cdot \hat{s})^2]}$

Simulation code: fortran scripts calling PTC^[1] as a library

- Obtain \hat{n}_0 and $\frac{\partial \hat{n}}{\partial \delta}$ with a first order normal form^[2], then apply DK formula (Contain effects due to first order spin resonance only)
- Monte-Carlo simulation of depolarization rate^[3] (higher order spin resonances are also included)

Lattice modeling, including machine errors and corrections could be done in MAD-X / BMAD, and transformed to PTC readable format.

- [1] F. Schmit, E. Forest and E. McIntosh, CERN-SL-2002-044, 2002.
- [2] E. Forest, KEK Report KEK-2010-39, 2010.
- [3] Z. Duan, M. Bai, D. P. Barber and Q. Qin, NIM A793 (2015) 81.

Benchmark against other codes

Some simulations for CEPC-50 km model ring

- Arc FODO cells of phase advances 60/60 degrees, connected by straight FODO cells; Periodicity: 4. Circumference: 57436.8m. No polarization wigglers.
- Initially all quads are vertically misaligned by $50 \ \mu m \ rms$, then corrected with MICADO using 300 correctors.
- rms vertical closed orbit = 57.9 μ m.
- rms vertical closed orbit @ quadrupoles = 56.6 μ m.
- (vx, vy)=(268.124, 268.261)
- rms tilt of n0-axis = 0.98 mrad @ aγ=182.5

Polarization around 80 GeV

Polarization scan over energy

DKS theory at ultra-high beam energy

Away from spin resonances (DK1973)

$$P_{dk} = -\frac{8}{5\sqrt{3}} \frac{\alpha_{-}}{\alpha_{+}}$$

$$\alpha_{-} = \oint d\theta \langle \frac{1}{|\rho|^{3}} \hat{b} \cdot (\hat{n} - \frac{\partial \hat{n}}{\partial \delta}) \rangle$$

$$\alpha_{+} = \oint d\theta \langle \frac{1}{|\rho|^{3}} [1 - \frac{2}{9} (\hat{n} \cdot \hat{\beta})^{2} + \frac{11}{18} (\frac{\partial \hat{n}}{\partial \delta})^{2}] \rangle$$

No assumption regarding proximity to spin resonances (DK1975)

$$\alpha_{+} = \left\langle \frac{5\sqrt{3}}{8} \lambda \left[1 - \frac{2}{9} (\mathbf{nv})^{2} + \frac{11}{18} \left| \gamma \frac{\partial}{\partial \gamma} \sum_{k} \frac{w_{k} \exp i\psi_{k}}{v - v_{k} - i0} \right|^{2} \right] + \pi \sum_{k} |w_{k}|^{2} \delta(v - v_{k}) \right\rangle,$$
$$\alpha_{-} = \left\langle \lambda \frac{[\dot{vv}]}{|\dot{v}|} \left[\mathbf{n} - \operatorname{Re}\left(\mathbf{e}_{1} + i\mathbf{e}_{2}\right) \gamma \frac{\partial}{\partial \gamma} \sum_{k} \frac{w_{k} \exp i\psi_{k}}{v - v_{k} - i0} \right] \right\rangle,$$

Spin diffusion by uncorrelated crossing of spin resonances

Correlated and noncorrelated regimes (DKS1979)

The spread in spin phase in a synchrotron oscillation period
$$~~\kappa~=~rac{11}{18}
u_0^2 ilde{\lambda}_p/
u_z^3.$$

- If $\kappa \ll 1$, the successive passages of the spin resonance due to synchrotron oscillation are correlated
- Otherwise, if at the same time the rms spread of the spin-precessing frequency $\sigma_{\nu} = \nu_0 \sigma_{\delta} \gg \nu_z$ It is claimed that synchrotron oscillation drives the uncorrelated resonance crossings, and the depolarization rate is

$$\lambda'_{d} = \pi \sum_{k} \langle |\omega_{k}|^{2} \delta(\nu_{s} - \nu_{k}) \rangle.$$

CEPC CDR Parameters

Parameters	Higgs	W	Z
beam energy(GeV)	120	80	45.5
radius of curvature(km)	10.7	10.7	10.7
circumference(km)	100	100	100
bunch number	242	1524	12000
momentum compaction factor	1.11e-5	1.11e-5	1.11e-5
Natural rms energy spread	1e-3	6.6e-4	3.8e-4
synchrotron tune Q_z	0.065	0.04	0.028
polarization build-up time(hour)	2	15.2	256
spread of spin precessing rate $\sigma_v = a \gamma \sigma_{\epsilon}$	0.27	0.12	0.04
modulation index $\sigma = \sigma_v / Q_z$	4.19	3.0	1.40
Correlation index κ	1.21	0.30	0.017

$$\kappa = \frac{11}{18}\nu_0^2 \tilde{\lambda}_p / \nu_z^3$$
.

How to test this theory?

Correlated regime

Calculation the equilibrium polarization with only the first order spin resonances -> obtain the synchrotron sidebands -> sum over contributions from different spin resonances

DKS1979, K. Yokoya 1983

The synchrotron sideband resonances of an integer resonance are $\nu_0 = k + m\nu_z$, with the contribution to $\lambda_d^0/\tilde{\lambda}_p$ [40]

$$\frac{\lambda_d^0}{\tilde{\lambda}_p} = A \sum_{m=-\infty}^{\infty} \left[\frac{\Delta \nu}{(\Delta \nu + m\nu_z)^2 - \nu_z^2} \right]^2 e^{-\alpha} I_m(\alpha), \tag{9}$$

$$P_{
m eq} pprox \; rac{P_0}{1 + \sum\limits_{
u_k} \left(rac{\lambda_d^0}{ar{\lambda}_p}
ight)_{
u_k}}$$

Uncorrelated regime

Calculation of the first order spin resonances width with a normal form -> calculate the depolarization rate directly

$$\lambda'_d = \pi \sum_k \langle |\omega_k|^2 \delta(\nu_s - \nu_k) \rangle. \qquad P_{\rm eq} \approx \frac{P_\infty}{1 + \lambda_d / \lambda_p}$$

Model Ring

A ring of arc FODO cells connected by FODO straight sections, Periodicity = 4. Four skew quads are symmetrically inserted to drive horizontal & vertical spin resonances. No lattice

imperfections.

Straight Section ARC Section 1 Straight Section 2*π* phase advance Straight Section ARC Section 2 Straight Section

One superperiod			
Parameter	Case 1	Case 2	
Circumference(m)	54752	54752	
Beam energy(GeV)	120	150	
$ u_x/ u_y/ u_z$	193.084/193.218/0.181	193.088/193.216/0.162	
Relative energy spread	$1.3 imes 10^{-3}$	$1.64 imes 10^{-3}$	
damping time(turns)	80/80/41	41/41/21	
$emittance(mm \cdot mrad)$	$6.26\times 10^{-3}/1.92\times 10^{-5}/2.8$	$9.78\times 10^{-3}/2.92\times 10^{-5}/4.9$	
Sokolov-Ternov time (τ_p) (minute)	21.4	7.0	
rms spin precession frequency spread (σ_{ν})	0.358	0.560	
modulation $index(\alpha)$	3.921	11.986	
correlation $index(\kappa)$	0.174	1.160	

First order spin resonances

For Case 1, κ << 1

For Case 2, $\kappa > 1$

Discussions

- The simulation results support the theory of uncorrelated regime at ultra-high beam energies, CEPC@120 GeV is expected to be within this regime.
- This study shows there are some open questions to be answered theoretically, Klaus's talk introduced the status of their investigation, and more progress is expected.

Summary

- We've just started the CEPC polarized e+/e- program, and some key issues have been highlighted.
- I personally learned a lot in this workshop, and hopefully we could have more fruitful discussions in the future.

