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Motivation

e Energy calibration with resonant depolarization technique was a

major accomplishment at LEP
 How much better precision can be done in CEPC?

e “Can we have polarized colliding beam experiments?” has been a
must answer question in new linear/circular collider designs
* How to implement longitudinally polarized e- (e+ ?) beam(s) for colliding
experiments in CEPC?
e Are there strong physics cases?
* Would the design be cost effective?




Motivation

500
Chapter on polarization by Dr S. Nikitin in CEPC CDR

Appendix 8: Opportunities for Polarization in the CEPC

AS8.1: Introduction

One of the future experiments at CEPC can be a precise measurement of the mass of
the Z using resonant depolarization [1]. To achieve this goal one needs a method for
obtaining polarized electron and positron beams. In this appendix we consider the major
issues for obtaining the radiative self-polarization of particles with the current CEPC
design parameters at 45 GeVand at 80 GeV.

Funding grant of MOST-2018 supports CEPC polarization studies in the
coming 4 years, a more complete design of CEPC polarized beam
operation at Z energy (and possibly also at W energy) is foreseen in
the CEPC TDR.




Prospects and challenges

e Energy calibration with resonant depolarization

A detailed time diagram of operation with asymmetric wigglers
Complexities in energy calibration @ W

Estimation & simulation of the difference between the “measured energy” and
the “CM energy” at IPs

e Longitudinally polarized e+/e- colliding beams

Polarized e+ source seems less matured at the moment
Maintenance of beam polarization in the booster

Spin rotator design

Spin matching

Equilibrium beam polarization w/ spin rotators, errors, & beam-beam




Equilibrium beam polarization simulations

The D-K formula For Monte-Carlo simulation
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Simulation code: fortran scripts calling PTC*! as a library

PN on . . .
e Obtain iy and a—; with a first order normal form!2l, then apply DK formula ( Contain effects

due to first order spin resonance only)
* Monte-Carlo simulation of depolarization rate3! (higher order spin resonances are also
included)

Lattice modeling, including machine errors and corrections could be done in MAD-X /
BMAD, and transformed to PTC readable format.

[1] F. Schmit, E. Forest and E. McIntosh, CERN-SL-2002-044, 2002.
[2] E. Forest, KEK Report KEK-2010-39, 2010.
[3] Z. Duan, M. Bai, D. P. Barber and Q. Qin, NIM A793 (2015) 81.




Benchmark against other codes

0.8+

For a model ring of VEPP-2000

Courtesy of V. Ptitsyn For a model ring with vertical bends
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Some simulations for CEPC-50 km model ring

Arc FODO cells of phase advances 60/60 degrees, connected by
straight FODO cells; Periodicity: 4. Circumference: 57436.8m. No
polarization wigglers.

Initially all quads are vertically misaligned by 50 um rms, then
corrected with MICADO using 300 correctors.

rms vertical closed orbit =57.9 um.

rms vertical closed orbit @ quadrupoles = 56.6 um.
(vx, vy)=(268.124, 268.261)
rms tilt of n0-axis = 0.98 mrad @ ay=182.5




Polarization(%)

Polarization around 80 GeV
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Polarization scan over energy
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DKS theory at ultra-high beam energy

Away from spin resonances (DK1973) No assumption regarding proximity to spin resonances
(DK1975)
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Spin diffusion by uncorrelated crossing of spin resonances

Correlated and noncorrelated regimes (DKS1979)

The spread in spin phase in a synchrotron oscillation period Kk = 181/0)\1,/1/

e If k<<1, the successive passages of the spin resonance due to synchrotron oscillation are correlated
e Otherwise, if at the same time the rms spread of the spin-precessing frequency o, = vyos>v.

It is claimed that synchrotron oscillation drives the uncorrelated resonance crossings, and the
depolarization rate is

Ny =103 (wrl?(vs — ).
k




CEPC CDR Parameters

Parameters Higgs W VA
beam energy(GeV) 120 80 45.5
radius of curvature(km) 10.7 10.7 10.7
circumference(km) 100 100 100
bunch number 242 1524 12000
momentum compaction factor 1.11e-5 1.11e-5 1.11e-5
Natural rms energy spread le-3 6.6e-4 3.8e-4
synchrotron tune Q, 0.065 0.04 0.028
polarization build-up time(hour) 2 15.2 256
spread of spin precessing rate o,=ay o, 0.27 0.12 0.04
modulation index o=0,/Q, 4.19 3.0 1.40

Correlation index k 1.21 0.30 0.017




How to test this theory?

Correlated regime

Calculation the equilibrium polarization with only the first order spin resonances -> obtain the
synchrotron sidebands -> sum over contributions from different spin resonances

DKS1979, K. Yokoya 1983

The synchrotron sideband resonances of an integer resonance are vy = k + P(]
mu,, with the contribution to A}/A, [40] Poq & 30 |
2 1+ 3 ()
Y - Av o Vi PJVy
I [ | R

Uncorrelated regime

Calculation of the first order spin resonances width with a normal form -> calculate the depolarization
rate directly

N = wZ(|wk|26(V3 — Vk)). Py =
k

Py
1+ )\d/Ap




Model Ring

A ring of arc FODO cells connected by FODO straight sections, Periodicity = 4.
Four skew quads are symmetrically inserted to drive horizontal & vertical spin resonances. No lattice

imperfections. StraightSecton ARG Secton 1 Straight Secion 27 phase advance Staight Socon ARG Secton 2 Swright Socon
I - I
One superperiod
Parameter Case 1 Case 2
Circumference(m) 54752 54752
Beam energy(GeV) 120 150
va vy s 103.084,/193.218/0.181 193.088/193.216/0.162
Relative energy spread 1.3 % 103 1.64 x 103
damping time(turns) 80/80/41 41/41/21
emittance( mm-mrad) 6.26 x 107%/1.92 x 1079/2.8 9.78 x 107%/2.92 x 10-5/4.9
Sokolov-Ternov time(y,) (minute) 21.4 7.0
rms spin precession frequency spread(o.) 0.358 0.560
modulation index{e) 3.921 11.986

correlation index(k) 0.174 1.160
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For Case 1, k<<1

Beam energy(GeV)
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For Case 2, k> 1

Equilibrium polarization(%)
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Discussions

 The simulation results support the theory of uncorrelated regime
at ultra-high beam energies, CEPC@120 GeV is expected to be
within this regime.

e This study shows there are some open questions to be answered
theoretically, Klaus’s talk introduced the status of their
investigation, and more progress is expected.




e We've just started the CEPC polarized e+/e- program, and some
key issues have been highlighted.

e | personally learned a lot in this workshop, and hopefully we
could have more fruitful discussions in the future.
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